LOCA RESEARCH RESULTS FOR HIGH-BURNUP BWR FUEL

Y. Yan, R. V. Strain and M. C. Billone Argonne National Laboratory, USA

Nuclear Safety Research Conference Washington, DC October 28-30, 2002

HIGH BURNUP LOCA FEATURES

• BWR Fuel Rods (Limerick at ≈57 GWd/MTU, ≈10 μm OD Oxide)

- Effect of tight fuel-cladding bond and restricted gas flow on ballooning, burst, inner-surface-oxidation/hydrogen-pickup
- Effect of irradiation on high temperature oxidation in steam
- Effect of fuel-cladding mechanical interaction on fragmentation resistance during water quench; post-quench ductility

• PWR Fuel Rods (HBR at ≈67 GWd/MTU, ≤ 100 μm OD Oxide)

- Similar fuel-cladding issues as for BWR
- Effect of in-reactor oxide layer on oxidation kinetics and ECR.
- Effect of hydrogen pickup on oxidation kinetics, fragmentation-resistance during water quench and post-quench ductility.

ANL LOCA-RELEVANT TESTS FOR HIGH BURNUP FUEL CLADDING

Steam Oxidation Kinetics Studies

- 900-1300°C, emphasis on **1204**°C for 5-20 minutes
- Kinetics of weight gain, (oxide $+ \alpha$) layer growth rate, effective β layer thickness vs. time at temperature, ECR

• LOCA Integral Tests

- Test adequacy of 10CFR50.46 ECCS licensing criteria (ECR ≤ 17%, T ≤ 1204°C) for high burnup fuel
- Determine ECR (≥17%) thresholds for thermal quench fragmentation and loss of post-quench ductility
- Post-Quench Ductility Tests (Bend & Ring Compress.)

SUMMARY OF STEAM OXIDATION KINETICS RESULTS

- Metallographic Results for 1200°C Tests
 - No significant difference in measured weight gain (Δw_m) for unirradiated and irradiated (10- μ m pre-test oxide layer) Zry-2 and unirradiated Zry-4
 - Excellent agreement between Δw_m and Cathcart-Pawel (CP) model predictions (Δw_p)
 - CP Δw_p is adequate "best-estimate" correlation for Zry-2, Zry-4, ZIRLO, M5 and E110 at 1100-1500°C
- Metallographic Analysis for 1000, 1100 and Duplicate 1200°C Test Samples (in progress)

Measured Weight Gain from Metallography for Irradiated and Unirradiated Zry-2 and Zry-4

Comparison of Weight Gain Correlations and Data Normalized to the Cathcart-Pawel Correlation

SUMMARY OF STEAM OXIDATION KINETICS RESULTS (Cont'd)

Assessment of Cathcart-Pawel (CP) Models

- Based on very rapid heating and cooling rate test data
- Weight gain correlation is good even for slow ramp rates
- Underpredicts α-layer and overpredicts β-layer thickness for LOCA-relevant cooling rates (1-8°C/s) due to oxygen diffusion from β to α phase during 1200°C \rightarrow 800°C
- ANL results (-5°C/s): 25% higher (oxide + α) than CP
- Impact is TBD as "ductility" increases with reduction in oxygen and decreases with thickness reduction of β layer

Oxide, α and β Layer Characteristics (in Steam at 1204°C for 10 Minutes; ECR = 11%)

unirradiated Zry-2

irradiated Zry-2

LOCA INTEGRAL TESTING SCOPE

Parameters Common to BWR and PWR Tests

- Fuel-cladding samples = 305-mm long; fueled region = 270 mm
- $PCT = 1204\pm20^{\circ}C$, temperature ramps relevant to SB-LB LOCA
- Internal pressure P_i <1.3×system pressure, **plenum V** ≈ 10 cm³
- Best-estimate 13% ≤ ECR < $\approx 30\%$ → oxidation time $\approx 1-10$ min.

High Burnup BWR Rods (Limerick)

- Temperature ramp rate = 5° C/s (2.5-7°C/s for SB-to-LB LOCA)
- Cladding $\Delta P = P_i P_s \le 8.6 \text{ MPa}$ [6.7 MPa (SB)- 8.6 MPa (LB)]

• High Burnup PWR Rods (H. B. Robinson)

- Temperature ramp rate = 5° C/s (1- 2° C/s for SB, 7- 10° C/s for LB)
- Cladding $\Delta P = P_i P_s < 20 \text{ MPa} [P_s = 3.4 \rightarrow 0.2 \text{ MPa} (SB \rightarrow LB)]$

LOCA INTEGRAL TESTING SCOPE (Continued)

- Steam and Quench Water Flow-rates/Volume
 - Steam flow = 5-10 g/minute
 - Cool-down rate = 3°C/s from 1204°C to 800°C
 (1-8°C/s for BWR)
 - Quench water velocity = 5 mm/s (initiated at 800°C)
- Test Times at 1204°C
 - Maximum ECR depends on wall thinning and extent of double-sided oxidation
 - Five-minute hold-time at 1204°C for 1st set of tests
 - Expected ECR \leq 21% (23% CP, 30% BJ)

LOCA INTEGRAL TEST SEQUENCE FOR FIRST SERIES OF BWR TESTS

- Phase A: Fuel Permeability, Ballooning and Burst
 - Permeability at 30°C and 300°C
 - Ramp (5°C/s) to burst in high purity argon
 - Slow furnace cool from burst temperature
- Phase B: Above Plus Oxidation
 - Permeability (30°C and 300°C); ramp to 1204°C in steam
 - Hold (5 min.) at 1204°C; cool to 800°C at 3°C/s
 - Slow furnace cool from 800°C to RT
- Phase C: Above Plus Quench at 800°C
 - Repeat B through cooling to 800°C; quench at 800°C

LOCA INTEGRAL TEST SEQUENCE

LOCA INTEGRAL TEST APPARATUS

Out-of-Cell LOCA Integral Test Apparatus

- Same design as in-cell apparatus (completed)
- Baseline data for unirradiated, archival cladding (Zry-2 completed)
- Modifications of in-cell apparatus (ongoing)
- Oxidation and LOCA Integral tests of cladding alloys (ongoing)

In-cell LOCA Integral Test Apparatus

- Same design and control system (shared) as out-of-cell apparatus
- All components are in-cell except quench unit
- Limerick Phase A Test (completed 8-15-02)
- Limerick Phase B Test (completed 9-23-02)
- Full LOCA Integral Test with Limerick sample (Jan. 2003)
- H.B. Robinson PWR tests will follow Limerick BWR tests

Out-of-Cell LOCA/Oxidation system

Argonne National Laboratory

LOCA TEST TRAIN ASSEMBLY

SUMMARY OF OUT-OF-CELL LOCA INTEGRAL TEST RESULTS

Test Specimens and Conditions

- Specimens: GE-11 (9×9) **Zry-2** cladding (**0.71-mm wall**), zirconia pellets with 0.1-mm radial gap, 10-cm³ void volume above pellets; Limerick archive cladding

- Conditions: cladding $\Delta P = 8.62$ MPa at RT

• Test #3 Results (10 min. in steam at 1204°C)

- Peak $\Delta P = 9.31$ MPa, burst $\Delta P \approx 8.41$ MPa, burst $T \approx 760$ °C
- "Dog-bone-shaped" burst opening; ≈13-mm long (ECR = 29%)
- Peak $\Delta D/Do \approx 60\%$; axial extent of balloon ≤130 mm
- Specimen survived thermal quench & post-quench handling

SUMMARY OF OUT-OF-CELL LOCA INTEGRAL TEST RESULTS (Cont'd)

• Test #4 Results (10 min. in steam at 1204°C)

- Peak $\Delta P = 10.28$ MPa, burst $\Delta P \approx 9.42$ MPa, burst $T \approx 720$ °C
- Similar burst opening and ballooning strain as in Test #3
- Sample failed across mid-burst region at 100°C after quench
- Based on results, hold time at 1204°C should be < 10 min.

• Test #5 Results (ramped to burst in Ar)

- Peak $\Delta P = 8.95$ MPa, burst $\Delta P \approx 8.61$ MPa, burst $T \approx 732$ °C
- "Dog-bone-shaped" burst opening; ≈13-mm long; 2-mm wide
- Peak $\Delta D/Do \approx 44\%$; axial extent of balloon ≈100-mm long

Out-Cell LOCA (OCL) Test 3: 10 min. at 1204°C (Survived quench & post-quench handling)

12% ECR 2850 wppm H₂ 2250 wppm H₂ 21% ECR 1250 wppm H₂ 29% ECR

Out-of-cell Test 4: 10 min. at 1204°C, C-P ECR ≈ 30% (Survived quench; fractured at 100°C under dead-weight load)

1st LOCA INTEGRAL TEST RESULTS LIMERICK HIGH-BURNUP BWR PHASE A

Limerick Specimens Prepared

- Phase A: middle of Grid Span #6; 0.94-1.24 m above fuel MP
- Phase B: middle of Grid Span #5; 0.46-0.76 m above fuel MP
- Phase C: to be prepared from GS #5 & 6 of different rod

• Phase A Test (Completed on 08-15-02)

- Calibration of top pressure transducer at RT from 0-10 MPa
- Pressurize top of specimen with He to 8.38 MPa at 300°C
- Stabilize (pressure rose to 8.56 MPa over 15 min) at 300°C
- Ramp temperature to burst in Ar; slow furnace cool

1st LOCA INTEGRAL TEST RESULTS LIMERICK HIGH-BURNUP BWR PHASE A (Cont'd)

- Burst Conditions for Phase A vs. OCL#5
- Peak $\Delta P = 8.95$ MPa for both tests
 - Burst $\Delta P \approx 8.61$ MPa at 755°C (≈ 8.26 MPa at 732°C for OCT#5)
 - Burst opening is oval (dog-bone for OCL#5)
 - Burst length (≈12-13 mm) and max. opening (2-3 mm) for both
- Balloon Characteristics for Phase A vs. OCT#5
 - Average $\Delta D/D_0$ at burst center = 38% (44% for OCL#5)
 - Axial extent of ballooning = 50 mm (100 mm for OCL#5)
 - Note: $\Delta T_{\theta} \approx 30^{\circ}\text{C} \ (\approx 10^{\circ}\text{C for OCL} \# 5)$

High-Burnup BWR In-cell LOCA Integral Test #1 Fuel Segment Temperature Ramp to Burst (8-15-02)

PRESSURE HISTORIES FOR IN-CELL TEST #1 AND OUT-OF-CELL LOCA TEST #5

BALLOONING COMPARISON IN-CELL TEST #1 vs. OUT-OF-CELL TEST#5

BURST OPENING COMPARISON

SIDE VIEW OF HIGH-BURNUP BWR ROD SEGMENT AFTER LOCA PHASE A TEST

FUEL BEHAVIOR DURING AND AFTER HIGH-BURNUP BWR LOCA TEST #1

- Dark Deposit on Quartz Tube (Fading with Time)
 - Black deposit on tube (will be gamma-scanned, Cs??)
 - Occurred during burst
 - Extends from burst region to about 50 mm above burst
- Fuel Particle Fallout (5.2 g) during Post-Test Handling
 - Test train was moved from vertical position in furnace to horizontal position at a different workstation
 - Large number of small fuel particles (<3 mm in diam.)
 fell out of burst opening during rotation of specimen
 from vertical to horizontal and about longitudinal axis

FUEL DEPOSIT AND PARTICLES WITHIN QUARTZ TUBE

Black Deposit Cs Compound??

Fuel Particles < 3 mm in diameter

2nd LOCA INTEGRAL TEST RESULTS HIGH-BURNUP BWR PHASE B

- Permeability Results at 30°C
 - Pressurization ramp at top of specimen to 8.7 MPa **Excellent gas communication from 1 to 8.7 MPa** Small axial pressure drop ($\Delta P_z \leq 0.5$ MPa) for 0-4s
 - Rapid pressure release at top of specimen (valve open) Lag in lower pressure response ($\Delta P_z \le 0.6$ MPa) Slow release from bottom transducer from 2→0.1 MPa
 - Results are to be consistent with fuel microstructure (macro- and micro-cracks) and high gas release

In-cell LOCA Integral Test #2 with Limerick BWR Fuel Gas Communication at 30°C during Pressure Rise, 9/19/02

In-cell LOCA Integral Test #2 with Limerick BWR Fuel Gas Communication at 30°C during Pressure Release, 9/19/02

2nd LOCA INTEGRAL TEST RESULTS HIGH-BURNUP BWR PHASE B (Cont'd)

Permeability Results at 300°C

- Pressurization ramp at top of specimen to 8.0 MPa
- Excellent gas communication from 2 to 8 MPa
- Some axial pressure drop ($\Delta P_z \le 0.9$ MPa) for 0-4s
- Pressure increases to 8.4 MPa during 300°C hold

Temperature Ramp to 1204°C

- Pressure peaks at 9.0 MPa at 728°C
- Burst at ≈750°C and ≈8.4 MPa (1200 psig)
- Rapid drop to 3.5 MPa; slow drop from 3 \rightarrow 0.1 MPa

In-cell LOCA Integral Test #2: High-Burnup BWR Fuel Segment Fuel Permeability Test at 300°C (09-23-02)

In-cell LOCA Integral Test #2: High-Burnup BWR Fuel Segment Internal Pressure during Temperature Ramp (09-23-02)

2nd LOCA INTEGRAL TEST RESULTS HIGH-BURNUP BWR PHASE B (Cont'd)

Ballooning

- Axial extent ≈100 mm, peak at 25 mm below midplane
- Max. $\Delta D/Do = 50\%$; max. average strain = 40%
- Uncorrected for oxide thickness

Burst Opening

- Oval-shaped
- 14-mm long; 3.5-mm maximum width

2ND LOCA INTEGRAL TEST WITH HIGH-BURNUP BWR ROD: PROFILOMETRY

LOCA INTEGRAL TEST (PHASE B) HIGH-BURNUP BWR BALLOON & BURST

FUEL BEHAVIOR DURING AND AFTER HIGH-BURNUP BWR LOCA TEST #2

- Dark Deposit on Quartz Tube (same as in Test 1)
 - Black deposit on tube (will be gamma-scanned, Cs??)
 - Occurred during burst; stable during steam oxidation
- Fuel Particle Fallout during Post-Test Handling
 - Fuel particles (<1 g) ejected during test were collected
 - Bottom of test train was capped to trap fuel fallout during transfer and handling
 - Total of 4 grams of fuel were collected
 - Fallout continues with additional handling

NEAR TERM LOCA WORK

- Verify Specimen Preparation Techniques
 - Six-inch "practice" sample; bottom of Test #1 sample
 - Metallographic examinations (6-inch sample completed)
- Determine Composition of Dark Deposit on Quartz Tube (Gamma Scanning)
- Determine ECR, O₂ and H₂ Axial Distributions 5-min. Tests (in-cell & out-of-cell) at 1204°C
- Move Quench System In Cell and Run Full LOCA Sequence (→Jan. 2003)

